提示:担心找不到本站?在百度搜索 PO18脸红心跳 | 也可以直接 收藏本站

分卷阅读268

      质就越不稳定,越具备放射性,当然这里所说的原子指的是物质的量在化学元素周期表中排列相对靠后,原子的量相对比较大的放射性元素来讲的。
    导致元素不稳定的同位素是在挤在原子核内、元素的放射性是发生在其原子核,为此,必须要探讨原子核的内部才能找到原子不稳的原因。在之前的文章,我们探讨了原子核的结构,现在来做一个简单的回顾。
    核内最显著的信息是来自于放射性元素的原子核内放射出的三种射线:
    α射线,由氦核组成的粒子流。氦核由2电子以极高速率绕4个质子旋转,稳固、结合能极大。α射线说明在原子核内的质子、电子是以一定的结构动态存在着。氦核结构极为稳固,甚至是在核爆炸时也不分离。
    除氢气外,所有核内质子、电子首先是结合成氦核结构,再组合成原子核。
    β射线,是电子流,说明原子核内也存在着高速运转的电子。在放射性辐射中被高速放射出来。
    γ射线,是核内电子振动发出的频率极高的电磁波。高频电磁波告诉我们,原子核内存在着运转速率极高的电子,是电子跃迁辐射的电磁波。原子核是原子直径的万分之一,所以核内电子运转半径极小、速率极高,达到每秒3X10^18转,因而跃迁时辐射出γ射线。
    三种射线发射,标识着核内部分结构解体,放射现象揭示了原子核内的秘密,这是大自然提供的蛛丝马迹。
    除三种射线之外,在衰变中还发现了1个电子和1个质子结合而成的中子,中子是1个电子绕1个质子旋转结合而成的结构存在。
    在原子核中,单个的中子是不稳定的,常常是结合核内的质子,以1个电子环绕两个质子,形成核元,两个核元再结合成一个氦核。核结构的组成和运动,将是核物理研讨的重要课题。
    一百年前,人们探索到了原子核内有中子、质子,直至今天都认为这些粒子是像红豆、黄豆一样混合成团地挤在一起,这种认识是粗浅的。核物理学精确地测定了所有元素的原子质量(标明在周期表内),于是我们就能够了解核内质子数和氦核、核元的数量,能够大致判断该原子核的基本性质及稳定性。如:铀235中,2354=58…3个质子,构成一个核元,一个中子落单,所以铀235不稳定,容易辐射出中子、引发裂变,铀238的质子全部组成氦核和核元,因而很稳定。铀238吸收中子变成铀239,就又不稳定了重核元素的原子量越大,原子核的结构就越不稳定,寿命越来越短。
    文章题目是:是否存在稳定的高原子量元素?用一句中国的老话来说,就是“人大分家、树大分叉”,高原子量元素的不稳定是核结构天然形成的,人们没有必要去追求稳定的高原子量元素。
    第241章 固体中是否有超流动性?如果有,如何解释?
    相对于固体中的超流动性的定义,我们更能够容易理解冷焊现象,和分子的自由运动这个导致固体融为一体的现象。固体分子的自由运动现象在低温超导以及低温冷焊技术中占据着原理和基础知识的作用,但是对于固体的超流动性的物理定义,我们则不能相对的论述,首先我们要考虑的是这种超流动性是否存在的问题,那么根据宇宙温度,超低温冷焊的现象我们可以说,在超低温也就是低温近乎于宇宙温度的临界值的时候,是有可能存在固体的超流动性的,那么在物理学上,固体的超流动性在物理学具体的定义又是什么呢?
    有。固体一般由原子核、电子、光子等粒子所组成。
    固体中相邻原子核存在较强的相互作用,这些原子都在相对固定的位置上振动和转动,它们既是固体的主要组分,也是固体整个框架的构造者。原子核物理告诉我们,原子核的尺度不足原子半径的万分之一,如果把原子核比作天上的星星,显微镜下的固体结构如同浩渺的星空。正是原子核所撑起的固体框架为电子和光子提供了容纳和运动的广阔空间。
    固体中电子(光子)分为核外电子(光子)和游离电子(光子)。核外电子和光子在原子核的引力作用下围绕原子核运动,在核外电子和核外光子运行轨道之外的相邻原子核之间,还存在一个广阔的空间(相对电子的尺度而言),这就是游离电子和游离光子的活动场所。
    与束缚在原子核周围的核外电子和核外光子不同,如同光在介质表面会发生反射一样,这些游离电子和游离光子在靠近原子核时也会发生碰撞反弹,而在海绵状的原子核间隙中永不停歇地自由运动(流动)。这就是固体中的超流动性。
    这就是刘泰祥用“系统相对论”研究方法创建的“一元二态物理”,所相关的学术理论。
    那么既然我们首先定义了固体的超流动性,那么我们就要求构建一个屋里模型,来大胆设想一下,如果有存在固体的超流动性,那么我们将如何解释这种性质,以及这种性质给固体带来的物理以及化学性质,甚至是其他的更深一层的特殊性质呢?
    我们可以说固体的超流动性也可以有另外一种更学术的说法,就是我们在高中时代所学习的分子的自由运动性质,但是这种分子的自由运动的性质并不是仅仅限于固体的,在气体分子,液体分子,以及超形态分子中甚至都存在这种性质,不是只有固体之存在这种性质的,那么既然所有的分子都具备这种性质,那么相对于固体,他又将具备怎样不同于其他形态的分子的活